• Home
  • About
  • Contact
  • SCALE STEEL NEWS
SCALE STEEL.
  • Home
  • About
  • Contact
  • SCALE STEEL NEWS

ASTM B150 C63000 Aluminum Bronze, Copper Alloy- SCALE STEEL.

7/5/2022

 
ASTM B150 C63000 bronze has high strength good wear resistance [SCALE STEEL]for high strength screws, nuts, copper sleeves, sealing rings, and wear resistant parts, the most prominent feature is its good wear resistance.
 
Name:
C63000 aluminum bronze
 
Application:
Manufacture supports, gears, bushing, etc
 
Types:
 C63000 aluminum bronze rod, copper tube
 
International Brand ---- --[SCALE STEEL]
 
Ingredient:
Aluminum 6.0-8.0%, Surplus copper.
 
Standards:
 GB/T4423-1992; GB/T1528-1997; ASTM B150
 
Production Process:
melting → ingot casting → extrusion → stretching
 
Addition Introduction for C63000 Bronze:
Outside diameter of production[SCALE STEEL] range ¢5-300mm; Length according to guest requirement.
The aluminum bronze bar has good cutting and grinding performance, can be welded, easy to hot work forming. Aluminum bronze rod alloy is mainly used to manufacture bracket, gear, shaft sleeve, bushing, nozzle, flange, rocker arm, guide valve, pump rod, CAM, fixed nut and other high strength and wear-resistant structural parts.
Aluminum bronze generally contains less[SCALE STEEL] than 11.5% aluminum, and sometimes appropriate amounts of iron, nickel, manganese and other elements are added to further improve the performance. Aluminum bronze can be strengthened by heat treatment, its strength is higher than tin bronze, and its resistance to high temperature oxidation is better.
Aluminum bronze containing iron and manganese elements has high strength and wear resistance, hardness can be improved [SCALE STEEL]after quenching and tempering, high temperature corrosion resistance and oxidation resistance in atmosphere, fresh water and sea water corrosion resistance is very good, machinability is fair, welding is not easy to fiber welding, hot state under pressure processing is good.

High Nitrogen Content Stainless Steel- SCALE STEEL.

5/9/2022

 
​High nitrogen steel is one kind of stainless steel whose nitrogen content exceeds the limit nitrogen content that can be achieved in steel under conventional conditions.  According to the different amount of nitrogen added, the following classification is roughly made, that is, the steel with nitrogen content >1% is ultra-high [SCALE STEEL]nitrogen, the steel with nitrogen content 0.3 ~ 0.5% is high nitrogen, and the steel with nitrogen content below this range is nitrogen.  The effect of nitrogen in stainless steel is mainly reflected in three aspects: the microstructure, mechanical properties and corrosion resistance of stainless steel.  The results show that nitrogen is a very strong element that forms and stabilizes austenite and enlarges the austenite phase region. It can replace part of nickel in stainless steel, reduce the ferrite content in steel, make austenite more stable, prevent the precipitation of harmful intermetallic phases, and even avoid the occurrence of martensite transformation under cold working conditions.  
 
Used to think that nitrogen in steel will be brittle and must be processed to remove elements as, but during the period of 1910 ~ 1930 in nitrogen in steel can improve the strength of the research, and use it to improve the toughness, fatigue strength and corrosion resistance, such as performance, found that the addition of[SCALE STEEL] nitrogen quantity the more the more the performance improving trend, so as to carry out the related research of the amount of the expanded to join.  
 
The biggest reason for interest in nitrogen is that it can substitute nickel.  In the 1930s and 1940s, in order to save nickel from wartime supplies in Japan, nitrogen as a substitute for nickel to form austenite phase was paid [SCALE STEEL]attention to.  However, until now, how to improve the properties of steel by nitrogen solution and its mechanism are still unknown, which need to be solved urgently.  
 
Mechanical Properties of High Nitrogen Content Stainless Steel:   
 
With the increase of nitrogen element in stainless steel, the hardness, yield strength, tensile strength and fatigue resistance of stainless steel have been significantly improved.  The introduction of nitrogen can effectively improve the strength of stainless steel and stabilize the austenite phase, which can be said to kill two birds with one stone.  Especially the introduction of nitrogen can significantly improve the yield strength and tensile strength of alloy materials.  
 
Local Area Corrosion Resistance:
 
There is no doubt that the introduction of nitrogen greatly improves the corrosion resistance of the material.  This can be clearly [SCALE STEEL]seen from The calculation formula of The Pitting resistance Equivalent number:  
 
Formula 1: PREN=%Cr+3.3%Mo+16%N  
 
According to the above formula, the pitting corrosion equivalent of stainless steel is mainly determined by the nitrogen content in stainless steel.  Its calculation factor reaches 16.  Nitrogen content also significantly[SCALE STEEL] changed PREN values.  This is just a calculation formula for the PREN value of nitrogenous stainless steel materials. In the high nitrogen stainless steel materials composed of different formulas, the calculation factor of nitrogen element even reaches more than 25.  

Development History of Ultra High Strength Stainless Steel- SCALE STEEL.

5/9/2022

 
Because of high strength stainless steel’s excellent matching and corrosion resistance, strong toughness in aerospace, it is widely usded in the field of national economy and people's livelihood application like marine engineering ,energy equipment manufacturing, such as the plane of the main bearing components, fasteners, [SCALE STEEL]satellite gyroscope, ship shell, offshore oil platform, automobile industry, nuclear industry, gear and bearing manufacturing, etc.,  It is the preferred material for lightweight design, energy saving and emission reduction of future equipment components.  As one of the important candidate materials for load-bearing and corrosion-resistant structural parts, how to combine ultra-high strength and toughness with excellent service safety is the key development direction of this kind of steel in the future.  
 
Development History:  
Carnegie Illionois developed the first generation of martensitic precipitation-hardened stainless steel in 1946 to meet the needs of high performance corrosion resistant structural steels for aerospace and Marine engineering.  On the basis of Stainless W steel alloy system, Cu and Nb elements were added and Al and Ti elements were removed.  American Arm‐ CO Steel Company developed 17-4pH steel in 1948 [4]. Due to its good strength, toughness and corrosion resistance, it is widely used in manufacturing fasteners and engine parts besides landing gear components of F-15 aircraft, but its cold deformation ability is poor.  In order to reduce the high temperature δ -ferrite which is unfavorable[SCALE STEEL] to the transverse mechanical properties, a 15-5pH steel [5-7] was developed by reducing the content of Cr and increasing the content of Ni. This steel overcomes the disadvantage of 17-4pH steel in transverse plasticity and toughness, and has been used in the manufacturing of ship and civil aircraft bearing parts.  In the early 1960s, Inco invented martensitic aging steel and introduced the concept of martensitic aging strengthening for the development of high strength stainless steel, thus opening the curtain of the development of martensitic aging stainless steel.  In 1961, the American company first developed the maraging stainless steel Custom450 containing Mo.  Later, Pyromet X-15 and Pyromet X-12 were developed in 1967 and 1973 respectively.  During this period, the United States has also developed AM363, In736, PH13-8MO, Unimar CR, etc.  Martin et al. [8,9] obtained the invention patents of Custom465 and Custom475 steel in 1997 and 2003 respectively, and applied them in civil aviation aircraft.  British developed FV448, 520, 520(B), 520(S) and other high strength stainless steel brands.  Germany developed the Ultrafort401 and 402 in 1967 and 1971.  In addition to copying and improving American steel grades, the Former Soviet Union independently researched a series of new steel grades.  In 2002, QuesTek undertook the pollution prevention project of THE STRATEGIC Environmental Research and Development Program (SERDP) of the U.S. Department of Defense. Through the Material Genome Project, QuesTek designed and developed Ferrium®S53, a new type of ultra-high strength stainless steel for aircraft landing gear [10], and published [SCALE STEEL]the AMS5922 aerospace standard at the end of 2008.  Ferrium®S53 has A strength of about 1,930mpa and fracture toughness (KIC) of 55 MPa·m1/2 or more. It has been added into the MMPDS trunk Material Manual of the United States in 2017, and has been successfully applied to THE A-10 fighter aircraft and T-38 aircraft of the United States. It is the preferred material for the landing gear of the next generation of carrier-based aircraft.  
China began to develop high strength stainless steel in the 1970s.  In 2002, CIRON and Steel Research Institute designed and developed a new type of ultra-high strength and toughness stainless steel material, which is the ultra-high strength stainless steel USS122G of Cr-Ni-Co-Mo alloy system independently developed by China with independent intellectual property rights. Its strength is more than 1900 MPa and KIC is more than 90 MPa·m1/2 [12].  At present, the material has broken through the key technology related to the preparation of bar with a diameter of 300 mm, and has a wide application prospect in the field of Aerospace equipment manufacturing in China.  
 
Stress Corrosion Cracking of Ultra High Strength Stainless Steel: 
According to the failure investigation report of Aircraft parts in The United States, stress corrosion cracking is one of the main forms of [SCALE STEEL]sudden failure accidents occurred in the service of key load-bearing parts of aircraft, and most landing gear is finally broken due to stress corrosion or fatigue crack propagation [61].  At present, stress corrosion occurs not only in aviation, aerospace, energy, chemical and other high-tech industries, but also in almost all commonly used corrosion resistant steel and metal.  Therefore, it is of great scientific value and practical significance to analyze the stress corrosion cracking mechanism of ultra-high strength steel and the factors affecting the stress corrosion of ultra-high strength steel.  
The corrosion resistance of materials becomes an important factor to limit the stress corrosion cracking of high strength steel, and pitting corrosion is the most common and harmful form of corrosion.  Most stress corrosion cracking [SCALE STEEL]originated from pitting pits. In the process of aging treatment, the microstructure of ultra-high strength stainless steel is not uniform due to the precipitated phase from supersaturated martensite matrix, which is the main source of pitting corrosion of ultra-high strength stainless steel.  The passivation film near the precipitated phase is weak, and the invasion of Cl- leads to the destruction of the passivation film, and the formation of microbatteries between the precipitated phase and the matrix, so that the matrix is dissolved, the precipitated phase spares off, and pitting corrosion is formed.  For example, cr-rich carbides M23C6 and M6C and intermetallic compounds Laves phase equal σ are prone to form cr-poor zone around, resulting in pitting phenomenon.  Luo et al. [62] and Yu Qiang [63] studied the effect of aging time on the microstructure and electrochemical behavior of 15-5pH ultra-high strength stainless steel by using THREE-DIMENSIONAL atomic probe chromatography. Cu-rich clusters and (Cu,Nb) nanoparticles were observed when aging time was 1-240 min.  After long-term aging treatment, the sample surface is more susceptible to Cl- erosion.  After aging for 240 min, The Cr content around the [SCALE STEEL]precipitates also decreased, and Cr poor zone was easily formed in these parts.  The decrease of Cr/Fe ratio in passivated film leads to the decline of pitting resistance of passivated film.  In addition, the continuous precipitation of Cr-rich carbides at grain boundaries reduces the intergranular corrosion resistance of steel.  For example, the study [64] found that AISI 316Ti stainless steel has higher intergranular corrosion resistance than AISI 321 stainless steel, because the precipitation of Ti C reduces the formation of Cr-rich carbides, which is one of the precipitates leading to intergranular corrosion.  
As the most important ductile phase in high strength stainless steel, the content, morphology, size and stability of austenite also affect the stress corrosion sensitivity of steel.  Under the condition of the same size, morphology and stability, the stress corrosion cracking threshold value (KISCC) increases with the increase of austenite content, and the stress corrosion cracking sensitivity of steel decreases.  The reason is that the thin-film austenite structure formed on the martensitic slat boundary improves the toughness of steel and reduces the hydrogen-induced crack growth rate. There are two main reasons for the decrease of crack growth rate. One is:  When the crack expands from martensitic matrix to thin-film austenite, either it continues to expand into the austenite or changes the direction of propagation to bypass the austenite structure, it will consume more energy, resulting in the decrease of crack growth rate and the increase of stress corrosion resistance sensitivity.  Second: as I mentioned earlier, H in austenitic organization have higher solid solubility, low [SCALE STEEL]partial tendency, and the rate of diffusion of H in austenite is far smaller than in the martensite structure, is beneficial in high strength stainless steel hydrogen trap, results in the decrease of hydrogen embrittlement sensitivity of the crack front, the crack propagation rate reduce, improve the stress corrosion sensitivity.  It should be noted that the stability of austenite is also a key parameter determining the stress corrosion sensitivity of steel. After the stress or strain-induced martensitic transformation, the fresh martensite transformed from austenite can not only suppress the crack propagation, but also improve the sensitivity of steel hydrogen embrittance as a new source of hydrogen diffusion.  
In conclusion, the strength and toughness, stress corrosion and hydrogen embrittlement sensitivity of steel are affected by the complex multistage and multiphase structure, and the design and preparation of ultra-high strength stainless steel with excellent service performance by traditional trial and error method is difficult, long cycle and high cost.  Compared with the trial-and-error method, the rational design method, such as establishing a series of multi-scale analysis models of strength and toughness, stress corrosion properties and hydrogen brittleness, will be more purposeful.  The results of simulation analysis can be used to establish the design standard of high strength stainless steel, optimize the morphology, size and content of precipitated phase, martensite and austenite structure in steel, and further combine the multi-scale simulation with the actual material development process, which will greatly reduce the difficulty of material development, reduce the cost and shorten the development cycle.  
 
Ultra High Strength Stainless’ Future Development:
As a metal structure material with excellent strength, toughness and service safety, high strength stainless steel has a broad application prospect in aviation, aerospace, Marine engineering and nuclear industry.  In view of the harsh [SCALE STEEL]application environment of this kind of steel, the exploration of a new generation of high-strength stainless steel should not only focus on breaking the bottleneck of matching ultra-high strength and excellent plasticity and toughness, but also take into account the excellent service safety.  In the process of alloy design and heat treatment process formulation, the traditional trial-and-error method is gradually transferred to thermal/dynamic assisted alloy design, artificial intelligence mechanical learning and other rational design methods, in order to greatly improve the research and development cycle of new high-strength corrosion resistant alloy and save the research and development cost.  The mechanism of strengthening and toughening in high strength stainless steel is still to be further studied, especially the understanding of the precipitation behavior of the second phase and the superposition of the strengthening contribution value.  The effect of austenite content, size, morphology and stability on the toughness[SCALE STEEL] of high strength stainless steel has been studied extensively, but no effective mathematical model has been established to quantitatively estimate the contribution of austenite content, size, morphology and stability to the toughness of high strength stainless steel.  
In addition, it is urgent to solve the stress corrosion fracture mechanism and hydrogen embrittlement sensitivity of ultra-high [SCALE STEEL]strength stainless steel under complex strengthening system, so as to provide a theoretical basis for the durability design of ultra-high strength stainless steel.  

321H Stainless Steel- SCALE STEEL.

3/24/2022

 
​321H stainless steel has good corrosion resistance, especially in oxidizing medium has good corrosion resistance. Because of its good heat resistance and oxidation resistance, it is more used as a heat resistant steel. Comparing with 321 Stainless steel, [SCALE STEEL]321H has higher Carbon content and similar properties with 321 Stainless. 
 
A. 321H Corresponding Brand:  
1, GB GB-T standard: digital brand number: S32169, new brand number: 07Cr19Ni11Ti, old brand number: 1Cr18Ni11Ti;  
2, American standard: ASTM standard: [SCALE STEEL]S32109, UNS standard: 321H;  
3, JIS standard: SUS321HTB;  
4, DIN standard: 1.4940,1.4541;  
5, European standard EN standard: "X8CrNiTI18-10, X7CrNiTI18-10;  
6, NF standard: /;  
7, British BS standard: 321S20.  
 
B. 321H Stainless Steel Chemical Composition:  
⑴ carbon C: 0.04~0.10⑵ silicon Si: ≤0.75, [SCALE STEEL]⑶ manganese Mn: ≤2.00, ⑷ phosphorus P: ≤0.030, ⑸ sulfur S: ≤0.030,[SCALE STEEL] ⑹ chromium Cr: 17.00 ~ 20.00, ⑺ nickel Ni: 9.00 ~ 13.00, other elements: Ti≥4C~0.60.  
 
C. 321H Stainless Steel Physical Properties:  
Density Density (20℃) /kg/dm3:"8.03,, magnetism: none.  
 
D. 321H Stainless Steel Mechanical Properties:  
(1) Delivery status: solid solution treatment of bar, solid solution pickling of plate;  
⑵ Tensile strength (RM/MPa) 520;  
⑶ Elongation strength[SCALE STEEL] (Rp0.2/MPa) : 205;  
⑷ Elongation A/% : 40;  
⑸ Area shrinkage (Z/%) : 50.  
 
E. 321H Stainless Steel Heat Treatment:  
1. Hardness HBW≤ : solution 187, hardness HRB≤ : 90;  
2. Heating temperature: 920~1150;  
3. Heating method: fast cooling.  
 
321H Stainless Steel’s Application:
321H Stainless Steel is [SCALE STEEL]widely used for boiler superheater, heat exchanger, condenser, catalytic tube, cracking tube device and other steel tubes and fittings.  

DIN 17205 GS-25CrNiMo4 Special Cr-Ni-Mo Alloy- SCALE STEEL.

3/24/2022

 
GS-25CrNiMo4 alloy is one kind of special Cr-Ni-Mo Alloy which is suitable used under the environment with temperature up to 300℃[SCALE STEEL].
 
Chemical Composition for GS-25CrNiMo4 Alloy:
 
C(%):0.22-0.29
Si(%):0.30-0.60
Mn(%):0.60-1.00
P(%):Max 0.025
S(%):Max 0.025
Cr(%):0.80-1.20
Ni(%):0.80-1.20 [SCALE STEEL]
Mo(%):0.20-0.30
 
Mechanical Property for GS-25CrNiMo4 Alloy:
 
Proof Strength Rp0.2(MPa):350-400
Tensile Strength Rm(MPa):650-850
Impact Energy KV(J):24
Elongation at Fracture A(%):21
Reduction in Cross [SCALE STEEL]section on Fracture Z(%):43
As-Heat-Treated Conditions:Solution and Aging,Annealing,Ausaging,Q+T,etc
Brinell Hardness(HBW):442
 
For Moe Infos about GS-25CrNiMo4, pls feel free to contact us.
 
 
 

Nickel Alloy Steel- 12Ni14 (EN10028-4, EN10222-3)- SCALE STEEL.

3/6/2022

 
​I. Introduction of 12Ni14 Nickel Alloy Plate  
12Ni14 is a boiler pressure vessel steel plate, using the European standard brand, 12Ni14 is a nickel alloy steel plate used in pressure equipment, [SCALE STEEL]the common brand of European standard container plate are: HII/P265GH P275NH P275NL P355GH P355NH P355NH P355NL1 P460NH 16Mo3, etc  

2. The Implementation Standard of 12Ni14 Steel Plate: EN10028-4(Hot Rolled Type), EN10222-2( Forged Type)  

3. Delivery Status of 12Ni14 Steel Plate:  
The steel plate is usually delivered by normalizing, [SCALE STEEL]normalizing and tempering, quenching and tempering 

4. Chemical Composition of 12Ni14(%):
C: ≤0.15
Si: ≤0.35
Mn: 0.30-0.80[SCALE STEEL]
P: ≤0.020
S: ≤0.005
Ni: 3.25-3.75
V: ≤0.05

5.Mechanical Property of 12Ni14 Alloy:
[GRADE] [DELIVERY STATUS] [THICKNESS
/MM] [YIELD STRENGTH
/MPa] [TENSILE STRENGTH/MPa] [ELONGATION/% MIN.]
[EN10028-4 12Ni14
/ EN10222-3 12Ni14] [N/N+T/Q+T] [≤30] [≥355] [490-640] [22]
[30-50] [≥345]
[50-80] [≥335]


6. Main Applications of 12Ni14 Alloy:
12Ni14 is one kind of nickel [SCALE STEEL]alloy materials for pressure equipment especially under low temperature, mainly used in building of pressure equipment, boiler, pressure vessel, LNG tanks, etc.

316Ti Stainless Steel- SCALE STEEL.

2/23/2022

 
316Ti stainless steel plate is named 0Cr18Ni12Mo2Ti in international standard, and Chinese brand name is 1Cr18Ni12Mo2Ti stainless [SCALE STEEL]steel plate, 316Ti stainless steel plate is added Ti element in SUS316 to improve the resistance to intergranular corrosion. 316Ti stainless steel is used for equipment to resist sulfuric acid, phosphoric acid, acetic acid and acetic acid.  
 
Physical Properties of 316Ti Stainless Steel:  
 
A.Chemical Composition(%):  
C: 0.08 or less  
Si 1.00 or less  
Mn 2.00 or less  
P 0.035 or less  
S 0.030 or less  
Ni 10.00 ~ 14.00 [SCALE STEEL] 
Cr 16.00 ~ 19.00  
Mo 1.80 ~ 2.50  
Ti acuity 0.2 ~ 0.70  
GB/T1220-1992 has this provision, usually also called Mo2Ti or 316Ti  
 
B.Mechanical Properties:  
YS (Mpa) ≥205  
TS (Mpa) ≥520  
EL (%) ≥40  
Hv around 200 °  
Thickness: cold-tied 2B plate (0.09 -- 6.0mm);  
Hot rolled industrial plate No.1(3-50mm) [SCALE STEEL]medium thick plate, chemical plate, high temperature plate;  
Width: 5mm-- 850mm steel belt;  
1000, 1219, 1250, 1500, 1800, 2000mm coil plate, plate  
Surface: 2B smooth surface, No.1 industrial surface, BA (6K) mirror, 8K mirror, 9K mirror, drawing surface, frosted surface.  
Origin: Domestic, imported (Sweden,[SCALE STEEL] Japan, Finland, South Korea, South Africa, Taiwan)  
 
Key Properties of 316Ti Stainless:  
These attributes refer to products in similar, but not identical, attributes that are specified in other products, such as plates and forgings in their respective specifications.  The lower minimum pre - and post-heat[SCALE STEEL] temperatures reduce the incidence of weld cracking and simplify welding.  Low hardness decreases the heat affected zone to minimize deterioration in mold performance.  

15NiMn6 Nickel Alloy Steel Plate- SCALE STEEL.

2/21/2022

 
Introduction for 15NiMn6 Alloy Steel Plate:   
1.15NiMn6 Is a nickel alloy steel plate for [SCALE STEEL]pressure applications. Standard: EN10028-4(Hot Rolled Type) or EN10222-3(Forged Type).  
 
2.15NiMn6 Dimensions, Shape, Weight and Allowable Deviation   
The size, shape and allowable deviation of[SCALE STEEL] the steel plate shall meet the requirements of 2007+ A1:2009 in EN10028-1.  
 
3.15NiMn6 Delivery Status   
3.1 15NiMn6 Steel Plates are normally delivered in normalizing, normalizing and tempering condition.   
3.2 Steel plates shall be delivered by [SCALE STEEL]shearing or flame cutting   
4. Chemical Composition of 15NiMn6  
The chemical composition of nimN6 steel (melting analysis) shall meet the following requirements (%) :  
 
Chemical Composition Required for 15NiMN6 (%):  
C 0.18 or less;  Si 0.35 or less;  [SCALE STEEL]Mn: 0.8-1.5;  P 0.025 or less;  S 0.015 or less;  Al:-;   Ni: 1.30-1.70;  V 0.05 or less.   
Elements not listed in this table shall not be intentionally added to steel without the consent of the demander, except after smelting, and all appropriate measures shall be taken during the steelmaking process to prevent the addition of [SCALE STEEL]these elements from scrap and other materials which may adversely affect the mechanical properties and serviceability of the steel.  Among them: Cr + Cu + Mo 0.5 or less  
 
5.1 15NiMn6 Mechanical Performance:   
The mechanical and process properties of [SCALE STEEL]NIMN6 shall comply with the following table:  
 
15NiMn6 mechanical requirements (transverse)   
Grade    Thickness    Yield strength (MPa)    Tensile strength (MPa)    Elongation A(%)  
 
15NiMn6   ≤30         ≥355                 490-640               ≥22  
 
15NiMn6   30-50        ≥345                 490-640               ≥22  
 
15NiMn6   50-80        ≥335                 490-640               ≥22  
 
 
 
 

P355NH Normalized Weldable Fine Grain Steel Plate- SCALE STEEL.

1/18/2022

 
​The Relevant Family Steel Grades of P355NH:  
P275NH, P275NL1, P275NL2, P355N, P355NH, P355NL1, [SCALE STEEL]P355NL2, P460NH, P460NL1, P460NL2.  
 
Steel Grade Levels:  
Room Temperature Quality Class: P355N  
High Temperature Quality Grade: P355NH  
Low Temperature Quality Grade: P355NL1, P460NL1  
Special Low Temperature Quality Grade: [SCALE STEEL]P355NL2, P460NL2  
 
Tensile Properties  
P355N, P355NH, P355NL1, P355NL2 thickness 8-260mm  
Tensile strength RM630-450mpa, yield strength: 355-295mpa, elongation after fracture 21-22%  
 
Evaluation of Hydrogen Induced Crack Resistance  
The evaluation test for hydrogen cracking resistance of steel plate products shall be carried out according to EN10229, and A test solution[SCALE STEEL] (PH 3) or B test solution (PH 5) and corresponding acceptance criteria can be selected.  
 
HIC Test Acceptance Grade:  
Acceptance grade: Grade I, Grade II, grade III  
CLR% crack length ratio, CTR% crack [SCALE STEEL]thickness ratio, CSR% crack sensitivity ratio.  
 
Application Countries:  
P355NH is used in Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, [SCALE STEEL]Luxembourg, Malta, The Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland, the United Kingdom.  

S355NL Normalizing Rolled Weldable Fine Grain Structure Steel Plate- SCALE STEEL.

1/18/2022

 
S355NL Steel Plate belongs to standard of EN10025-3. Full Name: Normalizing/Normalizing rolled weldable fine grain structure steel plates. This standard together with EN10025-1 replaces EN 10113-1:1993 hot rolled steel products with weldable [SCALE STEEL]fine grain structure -- Part 1: General Conditions and EN 10113-2:  Hot-rolled weldable fine grain structural steel products - Part 2: Conditions for normalizing/normalizing rolled steel.  When the temperature is not less than -20°C, the minimum impact energy is specified, denoted by N. When the temperature is not less than -50°C, the minimum impact energy is specified, denoted by NL.  
 
Name of Steels:
S: for structural steel, N: state, capital L: [SCALE STEEL]specifies the level of minimum impact energy at a temperature not lower than -50°C.  
 
Property Performance  
Strength: Tensile strength: RM630-450mpa.  Yield strength: 355-275mpa, elongation after fracture 21-22%.  
 
National Standards Corresponding [SCALE STEEL]to S355NL:  
GB: Q345E  
JIS: SEV245  
ASTM: Type 3 Grade 50  
 
The Typical Application of S355NL Steel Plate:
Construction machinery, mining [SCALE STEEL]machinery, metallurgy, environmental protection, water conservancy and hydropower structural parts.  
 
<<Previous
Forward>>

    nEWS

    FROM SCALE STEEL
    INFO@FRESTEEL.COM

    ARCHIVES

    January 2023
    December 2022
    November 2022
    September 2022
    July 2022
    May 2022
    March 2022
    February 2022
    January 2022
    December 2021
    November 2021
    October 2021
    September 2021
    August 2021
    July 2021
    June 2021
    April 2021
    March 2021
    February 2021
    January 2021
    December 2020
    November 2020

    Categories

    All

    RSS Feed

HENAN SCALE IMPORT& EXPORT CO.,LTD
INFO@FRESTEEL.COM T:+8637186107816 F:+8637163797816

Copyright © 2018

  • Home
  • About
  • Contact
  • SCALE STEEL NEWS